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Inviscid quasi-geostrophic flow over topography : 
testing statistical mechanical theory 
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Numerical simulations are employed in a detailed test of the statistical mechanical 
description of topographic turbulence. Predictions of steady flows correlated with 
topography are given particular attention. Agreement between numerical and statistical 
mechanical results is demonstrated for a large range of parameter values, and over an 
ensemble of random choices of topography and initial conditions. 

1. Introduction 
Equilibrium statistical mechanics enables the analytical description of statistical 

properties of inviscid quasi-geostrophic flow over topography (Salmon, Holloway & 
Hendershott 1976; Frederiksen & Sawford 198 1). An important prediction is that 
eddy-topographic interactions give rise to topographically correlated mean flows. This 
result has not heretofore been tested in quantitative detail by comparison to numerical 
computations. 

Fresh motivation for examining this problem has arisen from recent suggestions that 
large-scale geophysical flows may exhibit a tendency to relax toward inviscid absolute 
equilibria. For example, Holloway (1992) has proposed that ocean models can be 
modified by replacing the traditional eddy viscosity representation of subgrid-scale 
effects by a term describing relaxation toward an equilibrium mean flow rather than 
toward rest. Frederiksen, Dix & Kepert (1995) suggest that the tendency for 
atmospheric circulation models to exhibit too much energy in their zonal modes stems 
from a resemblance of the simulated flows to equilibria of the inviscid barotropic 
vorticity equation. They note that the misrepresentation of the atmospheric energy 
spectrum actually worsens with increasing resolution, a tendency that is mirrored in the 
equilibrium spectra. This renewed interest in the connection between geophysical and 
absolute equilibrium flows has led us to test quantitatively the statistical mechanical 
results. 

2. Results from statistical mechanics 

$plane is 

which represents conservation of potential vorticity q = <+ h by a horizontal velocity 
field u = z x V$, where ll. is the velocity stream function, z is the vertical unit vector, 
and V is the gradient operator with respect to the horizontal coordinates (x, y ) .  Here 
C: = V2@ is the relative vorticity, and h(x ,y)  =AH,- H)/H,,  is the variation of depth 
H relative to the mean depth H,, scaled by the Coriolis parameter$ 

The dimensionless equation of motion for barotropic quasi-geostrophic flow on an 

a,g+z.vll.xv(<+h) = 0, (1) 
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In treating equation (1) by the methods of statistical mechanics, the assumption is 
made that the system is ergodic, i.e. that it visits all locations in phase space accessible 
under conserved integrals of the motion. We will consider two (second-moment) 
invariants : energy 

and potential enstrophy 

Beyond (2) and ( 3 )  there is an infinity of invariants given by integrals over the domain 
(subject to appropriate boundary conditions) of arbitrary functions of potential 
vorticity. Miller (1990) and Robert & Sommeria (199 1) have considered extending 
statistical mechanical theory for two-dimensional Euler equation flow to include 
additional invariants. See also Pasmanter (1994) and references therein. In the present 
context, including topography, we will choose maximally random initial conditions 
from a Gaussian distribution subject only to second-moment information. This 
property is preserved as well in the final equilibrium. 

Subject to (2)  and (3) ,  Salmon et al. (1976) construct a microcanonical ensemble for 
the probability distribution at equilibrium, having expressed the fields in terms of finite 
eigenfunction expansions. This ensemble yields expressions for the ensemble-mean 
properties of the system, which correspond to a state of maximum entropy (Carnevale, 
Frisch & Salmon 1981 ; Salmon 1982; Holloway 1986). The expressions involve two 
Lagrange multipliers, a and p, defined implicitly through the relations 

where hk is the Fourier coefficient for h(x, y) at wavenumber k,  and k = Jkl. Here and 
in the following a doubly periodic domain is assumed. Note that the individual terms 
in the summations represent the ensemble-mean spectra of energy and potential 
enstrophy . 

In each of equations (4) and (9, the first term is associated with fluctuations having 
vanishing ensemble means, and the second term with a temporally steady ensemble- 
mean flow. The rather surprising implication is that mean flows emerge from random 
initial conditions when topography is present. For the ensemble-mean stream function, 
the probability distribution yields 

where p = a/P, and the angled brackets denote an ensemble mean. The steady 
component of vorticity is thus correlated with topography according to 

where the asterisk denotes complex conjugation. The behaviour of these equilibria in 
the limit of infinite resolution is discussed by Carnevale & Frederiksen (1987). 
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3.  Comparison with numerical simulations 
In the special case h = 0, equation (1) describes inviscid two-dimensional turbulence 

without topography. The corresponding absolute equilibria, first derived by Kraichnan 
(1967), can be obtained by setting h, = 0 in equations (4) and (5) .  Note that such 
equilibria entirely lack a steady component. Agreement with energy spectra deduced 
from numerical simulations was demonstrated by Fox & Orszag (1973) and Basdevant 
& Sadourny (1975). Absolute equilibria for two-dimensional flows on a rotating sphere 
have analogous properties, and have also been shown to agree with numerical solutions 
(Frederiksen & Sawford 1980). 

Including topography enriches the absolute equilibrium solutions by introducing a 
steady component. New properties are available to test, including the correlation of 
topography with stream function and vorticity, and the apportionment of E and Q 
between mean and fluctuating components. However, only very limited tests of 
statistical mechanical theory have previously been undertaken (Cummins & Holloway 
1994; Wang & Vallis 1994). In these studies, scatter plots of ( 4 )  us. (+) were 
constructed in order to illustrate the linear relationship 

(q(x3.Y)) = P ( W ? Y ) ) ,  (8) 

which can be obtained from the inverse Fourier transform of equation (6). In each case, 
temporal averaging was employed to represent ensemble means. In no instance was the 
inferred value for p compared with the theoretical value determined by equations (4) 
and (5).  Thus, only the appearance of linearity of the form (8) was previously 
examined. 

The present work attempts a more comprehensive verification by comparing 
equations (4t(7) with spectra obtained from numerical solutions of equation (1) for a 
doubly periodic domain. The computations employ a Fourier spectral collocation 
scheme, with 64 collocation points in each of the x- and y-directions. Truncation with 
respect to k is isotropic, and dealiasing is performed according to the 2/3 rule (Canuto 
et al. 1988). The truncation wavenumber is thus k, = 21.33. Temporal integration is 
performed via a leapfrog scheme, with an occasional trapezoidal predictor-corrector 
step inserted to maintain stability. In all cases, E and Q are conserved to better than 
one part in lo3. 

In each simulation, random topography is synthesized by selecting normally 
distributed mode amplitudes according to the one-dimensional power spectrum 
(k+kh)-2.5,  with k,  = 4 in units of the fundamental wavenumber. The initial relative 
vorticity is also specified randomly according to the one-dimensional power spectrum 
k4(k + k J 6 ,  where k, is assigned a range of values. The variance of topography is in 
each instance set to unity. 

Two sets of tests are considered. In the first, 12 separate realizations of random 
topography and initial conditions are generated, each having k, = 5 and an initial 
vorticity variance of unity, For each realization, equation (1) is integrated from t = 0 
to t = 1200 or so, with units of time defined by the inverse square root of the initial 
relative enstrophy. The initial equilibration has largely concluded by t = 10. Ensemble- 
mean spectra for individual realizations are found by temporally averaging the data at 
1000 times evenly spaced over the latter three-quarters of the computations. Finally, 
an ensemble mean is performed by averaging over the various realizations. 

This procedure is selected in order that the results depend only upon the statistics of 
the topography, and not upon the details of any particular topographic realization. 
Because only the statistics of the topography and initial conditions are specified, the 
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FIGURE 1. Comparison of numerical and theoretical values of Lagrange multiplier ratio ,u 
for each realization in the ensemble. 

Q 
G 

: (4 
10-6 

1 10 100 1 10 100 

k k 
FIGURE 2. Comparison of theoretical and numerical spectra. (a) Energy of mean and fluctuating flow 
components. (b)  Cross-spectrum of 5 and h, multiplied by k so that the area above the curve 
corresponds to integrated correlation. Solid lines: numerical ensemble mean spectra for 12 
realizations of random topography and initial conditions. Dashed lines : theoretical ensemble mean 
spectra. Dotted lines: 95 % confidence interval for numerical ensemble mean spectra. 

invariants E and Q differ slightly between the individual realizations, with means and 
standard deviations given by E = (9.2k 1.2) x lop3 and Q = 1.00 kO.02. There is a 
corresponding spread in the Lagrange multipliers and their ratio p. Figure 1 shows 
numerical determinations of p for each realization, computed from least-squares fits to 
scatter plots of < q )  us. ( y?). These are compared with theoretical values for ,u obtained 
from a simple bisection search algorithm (e.g. Press et al. 1986) that locates a and p 
satisfying equations (4) and (5) .  Agreement between numerical and theoretical values 
for ,u is satisfactory for each realization. 

The energy spectra of the mean and fluctuating flow components, averaged over the 
various realizations, are shown in figure 2, along with the averaged vorticity- 
topography cross-spectrum. The solid lines denote ensemble means and the dotted 
lines 95 % confidence intervals, based upon variances for the sample of 12 realizations. 
The dashed lines indicate the predictions of statistical mechanical theory as given by 
equations (4) and (7), with the h, described exactly by the power spectrum given above. 
The theoretical and mean numerical spectra are found to agree to within the numerical 
confidence intervals. 
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FIGURE 3. Comparison of theoretical and numerical results for fixed Q and topography, with varying 
E. (a) Lagrange multiplier ratio p, (b)  fraction of energy in mean flow. The lines represent theoretical 
results, and the plus sign numerical results. In (a) the dashed lines correspond to p < 0. 

In the second set of tests, the topographic variance remains equal to unity, and the 
initial vorticity variance is tuned so that Q = 1.00. E is varied by assigning different 
values to the scale factor k,, and a single realization of topography is considered. 
Temporal averaging is performed as above, except that longer averaging periods are 
chosen in instances where the mean flow is especially weak. Statistical mechanical 
theory predicts that as E is varied, p undergoes two changes in sign, corresponding to 
sign changes of a and /3. In figure 3 (a), positive theoretical values of ,u are indicated by 
the solid lines, and negative values by the dashed lines. The plus signs denote numerical 
p determined by the method described above. Note that these values of p span nearly 
four orders of magnitude. In figure 3(b), theoretical and numerical values for the 
fraction of energy belonging to the mean flow are similarly compared. In both panels, 
the theoretical and numerical values are identical to within the plot resolution. Finally, 
to test that agreement is not restricted to Q = 1.00, additional comparisons were made 
for Q = 0.75 and 2.00, with fixed E = 1.00 x lo-' and the topography as above. 
Agreement is again obtained. 

4. Discussion 
How relevant are the inviscid absolute equilibria considered here to large-scale 

geophysical flows subject to forcing and dissipation, as well as to other effects not 
represented in equation (l)? Because E and Q are not conserved by such flows, inviscid 
statistical mechanical theory is not directly applicable to their description. However, 
numerical experiments indicate that the steady component of ensemble mean flow is 
relatively unaffected by forcing and dissipation, provided that the corresponding 
timescales remain longer than the eddy turnover timescale characterizing entropy 
maximization for all k (Zou & Holloway 1994). (The same is not true for the fluctuating 
component of flow, because viscosity prevents accumulation of energy near the 
truncation wavenumber.) That equation (9) approximately holds under such conditions 
has frequently been demonstrated (e.g. Bretherton & Haidvogel 1976; Treguier 1989; 
Griffa & Salmon 1989), although this relation apparently can fail for enclosed basins 
with certain choices of boundary conditions (Cummins 1992; Wang & Vallis 1994). 
The trademark mean flows of barotropic quasi-geostrophic equilibria also persist when 
effects of stratification (Salmon et al. 1976) and ageostrophy (Griffa et al. 1995) are 
introduced. Based upon these considerations, several recent studies have employed 
ocean circulation models that include a tendency for relaxation toward absolute 
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equilibrium mean flow (Holloway 1992; Alvarez et al. 1994; Eby & Holloway 1994; 
Holloway, Sou & Eby 1995; Fyfe & Marinone 1995; Sou, Holloway & Eby 1995). 

5. Conclusion 
Theoretical expressions for the statistical properties of inviscid barotropic quasi- 

geostrophic flow over topography in a periodic domain have been tested against the 
results of numerical simulations. The theoretical and numerical results are in excellent 
agreement for numerous random choices of topography and initial conditions. When 
topography and potential enstrophy are fixed and energy is varied, close agreement is 
found over a range of nearly lo4 in the Lagrange multiplier ratio p. Statistical 
mechanical theories that take into account only the quadratic invariants E and Q thus 
appear to accurately represent equilibrium flow properties when the initial conditions 
are essentially random. 

This work was supported by the Office of Naval Research (N00014-92-5-1775). 
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